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A B S T R A C T

Saproxylic beetles are highly sensitive to forest management practices that reduce the abundance and

variety of dead wood. However, this diverse fauna continues to receive little attention in the southeastern

United States even though this region supports some of the most diverse, productive and intensively

managed forests in North America. In this replicated three-way factorial experiment, we investigated the

habitat associations of saproxylic beetles on the coastal plain of South Carolina. The factors of interest

were forest type (upland pine-dominated vs. bottomland hardwood), tree species (Quercus nigra L., Pinus

taeda L. and Liquidambar styraciflua L.) and wood posture (standing and downed dead wood, i.e., snags and

logs). Wood samples were taken at four positions along each log and snag (lower bole, middle bole, upper

bole and crown) �11 months after the trees were killed and placed in rearing bags to collect emerging

beetles. Overall, 33,457 specimens from 52 families and �250 species emerged. Based on an analysis of

covariance, with surface area and bark coverage as covariates, saproxylic beetle species richness differed

significantly between forest types as well as between wood postures. There were no significant

interactions. Species richness was significantly higher in the upland pine-dominated stand than the

bottomland hardwood forest, possibly due to higher light exposure and temperature in upland forests.

Although L. styraciflua yielded more beetle species (152) than either Q. nigra (122) or P. taeda (125), there

were no significant differences in species richness among tree species. There were also no relationships

evident between relative tree abundance and observed or expected beetle species richness. Significantly

more beetle species emerged from logs than from snags. However snags had a distinct fauna including

several potential canopy specialists. Our results suggest that conservation practices that retain or create

entire snags as opposed to high stumps or logs alone will most greatly benefit saproxylic beetles in

southeastern forests.

Published by Elsevier B.V.
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1. Introduction

Although it is now widely recognized that saproxylic beetles are
highly sensitive to long-term losses of dead wood, virtually
nothing is known about the status of this diverse community in the
intensively managed forests of the southeastern United States.
However, this region faces a number of continuing (e.g., timber
harvesting), intensifying (e.g., urbanization and habitat fragmen-
tation), and emerging (e.g. biofuel production) threats to
saproxylic organisms (Wear, 1996; Harding, 2007). The south-
eastern United States contains 40% of the country’s timberland and
90% of the forests within the region are controlled by private
landowners (Wear, 1996, and references therein). Around 22% of
the land held by private landowners is managed intensively
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(typically on 30–50 yr rotations) for timber production by forest
industries (Wear, 1996). The remainder is managed variously by a
wide variety of landowners (Wear, 1996). Conserving saproxylic
beetles and other organisms in this complex landscape will require
great care and understanding. Unfortunately, too little is known
about the basic life histories and habitat requirements of most
species to prioritize actions or to make informed decisions. Here
we investigate the habitat associations of saproxylic beetles on the
upper coastal plain of the southeastern United States. The main
factors of interest are summarized below.
1. F
orest type. The coastal plain of the southeastern United States
is dominated by pines on relatively dry upland sites and by
mixed hardwoods on mesic bottomland sites. The relative
importance of these two main forest types to saproxylic beetles
remains unknown. Upland pine forests are more extensive than
bottomland hardwood forests throughout the region. However,
bottomland hardwood forests support more diverse tree species
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assemblages and may therefore be disproportionately impor-
tant to the saproxylic beetle fauna. A number of factors likely to
differ between forest types, such as canopy coverage (Økland,
2002), light exposure (Lindhe et al., 2005) and humidity
(Warriner et al., 2004), may also have important consequences
for the structure and species richness of saproxylic beetle
communities. In this study we sampled saproxylic beetles in
both an upland and bottomland forest. We predicted that overall
beetle richness would be higher in the bottomland forest than in
the upland forest due to the higher diversity of tree species in
bottomland forests.
2. T
ree species. We sampled wood from three tree species, each of
which differed in abundance between upland and bottomland
forests, to evaluate the effects of relative tree abundance on the
diversity and composition of saproxylic beetles. This question
has particularly important implications for saproxylic beetle
conservation, but remains largely unstudied. We predicted a
significant interaction between tree species and forest type due
to differences in relative tree species abundances between the
two forest types.
3. W
Fig. 1. Temperature and relative humidity over time for a bottomland hardwood

forest and an upland pine-dominated stand in South Carolina, USA.
ood posture. A large volume and variety of resources are
available to saproxylic insects above the ground in the form of
standing dead trees (i.e., snags), dead branches and twigs, and
rotting heart wood (Fonte and Schowalter, 2004). For example, in
a temperate broadleaved forest in Sweden, Nordén et al. (2004)
found snags made up about 22% of total dead wood volume and
another 6% was attributed to dead branches attached to living
trees. Standing or suspended dead wood is generally drier and
decays more slowly than wood in contact with the ground
(Jomura et al., 2008), possibly reducing the abundance and
diversity of insects present (Larkin and Elbourn, 1964). Several
studies from Europe support this notion (Jonsell and Weslien,
2003; Gibb et al., 2006; McGeoch et al., 2007; Hjältén et al., 2007;
Franc, 2007). However, many threatened species and other
insects appear to favor snags (Jonsell et al., 1998; Sverdrup-
Thygeson and Ims, 2002; Kappes and Topp, 2004; Hedgren and
Schroeder, 2004). Unfortunately, previous efforts to sample from
snags have generally limited sampling to within a few meters of
the ground. Until the upper reaches of snags are adequately
sampled, it will be impossible to reach definite conclusions
regarding the relative importance of snags and logs. Here we
compare the beetle communities inhabiting snags and logs from
base to crown to better understand the relative importance of
these two habitats in southeastern forests. We predicted that
overall species richness would be higher in logs than in snags
based on previous research and on the idea that the upper bole
sections and crowns of snags would be less accessible and
therefore less readily colonized than those of logs.

2. Methods

2.1. Study site

This research took place on the 80,267-ha Savannah River Site
(SRS) located in the upper Coastal Plain Physiographic Province of
South Carolina. The SRS, a facility owned and operated by the
United States Department of Energy, was established in 1951, and
was designated a National Environmental Research Park in 1972
(Kilgo and Blake, 2005). Most of the land now owned by the
Savannah River site was formerly used for agricultural purposes
and most forests currently standing were planted or regenerated in
the early 1950s (Kilgo and Blake, 2005).

The SRS is somewhat typical of the southeastern coastal plain in
that it is dominated (68%) by pine forests growing on relatively dry
upland sites and by mixed hardwoods (22%) occupying swamps
and riparian bottomlands (Kilgo and Blake, 2005). However, the
upland and bottomland sites do not consist purely of pines and
hardwoods, respectively. At least three tree species are relatively
common in both forest types. Sweetgum (Liquidambar styraciflua

L.) and water oak (Quercus nigra L.) grow most commonly on mesic
sites dominated by mixed hardwoods but also appear sporadically
among pines on dry upland sites. Similarly, loblolly pine (Pinus

taeda L.) is currently the dominant pine species growing in upland
pine forests but was historically restricted to moist bottomland
sites (Schultz, 1997) and continues to grow there at low densities.
Kilgo and Blake (2005) provide percent basal areas for tree species
in different forest types on the Savannah River Site. For a shortleaf-
loblolly pine slope, comparable to the upland forest used in this
study, Pinus (taeda and echinata), L. styraciflua and Q. nigra made up
80%, 2% and 1% of the total basal area, respectively. In contrast, the
average percent basal areas in bottomland forests bordering rivers
and large streams for P. taeda, L. styraciflua and Q. nigra were 2.2%,
10.6% and 3.5%, respectively (Kilgo and Blake, 2005).

The upland and bottomland forests used in this study were
approximately 25 km apart. One Hobo Data Logger was placed in
each forest type for approximately one year (2006–2007) to record
temperature and humidity. On average, the upland forest was
warmer than the bottomland forest (18.8 and 17.8 8C, respectively)
whereas relative humidity was on average lower there than in the
bottomland forest (72.2 and 76.6%, respectively). These differences
were most pronounced during the growing season (Fig. 1).

2.2. Experimental design

Our sampling followed a 2 � 3� 2 factorial design with the
respective factors being forest type (upland pine forest vs. bottom-
land hardwood forest), tree species (L. styraciflua vs. P. taeda vs. Q.

nigra), and posture (log vs. snag). There were three replicates.
On June 5–6, 2006, we created 9 snags and 9 logs in the upland

sites and the same number in the bottomland sites, equally divided
among L. styraciflua, P. taeda, and Q. nigra (i.e., three snags and logs of
each species at each site). Snags were created by girdling the trees to
a depth of 3 cm or more using a chainsaw and spraying full strength
(53.8%) glyphosate (Foresters’1, Riverdale Chemical Company, Burr
Ridge, IL, USA) into the wounds. To prevent the herbicide from
traveling up the tree and possibly affecting insect colonization, a
second girdle was created about 15 cm above the first before
herbicide was applied. Only the lower girdle was treated. All girdled
trees examined two weeks after treatment were dead.
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Approximately 11 months later, in May 2007, we returned to
collect sections from the three logs and snags of each species at
each site. After felling the snags with chainsaws, we removed 0.5 m
sections from the lower bole, middle bole, and upper bole of each
snag and log. The position of each section was measured from the
tree base (Appendix A). We also collected three 0.5 m crown
sections taken from major limbs or sometimes the upper-most
portion of the main bole. The tops of all but one of the sweetgum
snags had broken, so those crown sections had been in contact with
the ground for an unknown length of time. The upper bole sections
from these trees were taken directly below the point of breakage.
All the other snags were intact. All bole and crown sections cut on a
given day (May 3 and 8 for upland and bottomland forests,
respectively) were labeled and transported to Athens, Georgia.

We recorded the diameter (measured at the center) and bark
coverage (visual estimation) of each bole and crown section
(Appendix A) in the laboratory. We used these data to calculate the
total surface area (not including ends) and bark surface area
(product of surface area and visual estimate of bark coverage)
sampled from each snag and log.

2.3. Insect rearing

Emerging beetles were collected in the laboratory using rearing
bags. Rearing bags have been shown to be one of the most efficient
methods for collecting saproxylic beetles from dead wood (Jonsell
and Hansson, 2007). Bole (108) and crown sections (36) (i.e., the
three branch sections from each tree were tied together) were
suspended from wooden beams with synthetic rope and enclosed
within large (170 l) extra-strength black plastic trash bags. In one
bottom corner of each bag we attached a clear plastic collecting jar
containing propylene glycol. To prevent mold problems, we
continuously ventilated the bags using an electric blower
(HADP9-1 Cast Aluminum Pressure Blower, Americraft Manufac-
turing Co., Cincinnati, OH, USA). Air from the blower flowed
through a plastic PVC pipe (�10 cm in diameter) that ran the
length of the rearing facility near the ceiling. Each side of the pipe
had rows of holes into which were inserted sections of clear vinyl
tubing (0.95 cm o.d., 0.64 cm i.d.). Each section of tubing led from
the pipe to one of the rearing bags. The bags became inflated with
air, thus forming effective funnels. Excess air escaped through a
single small hole (�2 mm) drilled near the top of each collecting
jar. Overhead fluorescent lights were left on at all times. We did not
attempt to control temperature or humidity in the rearing facility,
but all samples experienced the same conditions. Screened
windows were opened along both sides of the facility to allow
for air movement and to match ambient conditions as closely as
possible. However, it was typically warmer inside the facility than
outside. Samples were collected about once a month for 20 weeks
(4 May–21 September and 9 May–26 September for upland and
bottomland samples, respectively) and transferred to 70% ethanol.
Beetles were identified using the classification system of Arnett
and Thomas (2001, 2002). Voucher specimens have been deposited
in the Georgia Museum of Natural History, Athens, Georgia.

2.4. Data analysis

To test whether there were any differences in the amount of
surface area sampled, we conducted a three-way analysis of
variance with total surface area sampled (summed for each log or
snag) as the response variable. The analysis was repeated for total
bark surface area sampled.

Bole and crown samples from each snag or log were combined
before conducting an analysis of covariance on a three-way
factorial design (SAS Institute, 1990). Surface area and bark surface
area were the covariates and the main effects were forest type, tree
species and wood posture. All effects were fixed and there were no
missing or incomplete samples.

Species richness estimates, based on the Chao1 estimator, were
calculated using EstimateS (Colwell, 2006). The Chao1 estimator is
calculated as follows: Chao1 = Sobs + (a2/2b) where Sobs is the
observed species richness, a is the number of singletons and b is
the number of doubletons (Colwell and Coddington, 1994). This is an
appropriate estimator for this study given that Chao1 is thought to
perform well on large datasets with large numbers of rare species
(Colwell and Coddington, 1994, and references therein). Species
richness estimates are useful because, by factoring in species rarity,
they give an indication of how thoroughly an assemblage of species
has been sampled. Because it is possible for observed richness trends
to differ from estimated richness trends, it is useful to examine both.

Indicator species analysis (Dufrêne and Legendre, 1997) was
performed four times using PC-ORD (McCune and Mefford, 2006)
to determine which species were significantly associated with (1)
upland or bottomland forests; (2) snags or logs; (3) oak, pine or
sweetgum; (4) lower bole, middle bole, upper bole or crown.
Indicator values ranging from 0 (no association) to 100 (perfect
association) were tested for statistical significance using a Monte
Carlo randomization with 2500 permutations (McCune and Grace,
2002).

3. Results and discussion

3.1. Data set

Overall, 33,457 specimens from 52 families and 250 ‘‘species’’
emerged over the 20 wk sampling period (Appendix B). An effort was
made to identify all specimens to the lowest taxonomic units
possible given available time and expertise. All specimens were
identified to family, 79% were identified to genus and 59% were
identified to species. Several species rich groups (e.g., Ciidae,
Corylophidae and Ptiliidae) were not sorted below family level and
were treated as single taxonomic units even though they likely
consisted of multiple species. The estimates of species richness
presented in this paper are therefore conservative. At least one
undescribed species, a histerid belonging to the genus Bacanius, was
collected in this study (A. Tishechkin, personal communication).

3.2. Surface area and bark surface area

Surface area did not vary significantly for any of the factors (data
not shown). However, bark surface area varied significantly among
tree species (F2,24 = 31.30, P < 0.0001), being lower for P. taeda than
for Q. nigra and L. styraciflua. There was also a significant interaction
between tree species and posture (F2,24 = 9.6, P = 0.0009) due to the
fact that P. taeda snags had considerably less bark than P. taeda logs
(0.55 � 0.12 and 1.22� 0.14 m2, respectively).

3.3. Species richness and habitat associations

Overall, species richness differed significantly between forest
types and wood postures but not among tree species (Table 1).
Because there were no significant interaction terms (Table 1), the
results for each factor are discussed individually below.
1. F
orest type. In total, 189 and 175 beetle species were collected
from the upland and bottomland forests, respectively. Mean
species richness was significantly higher in the upland forest
than the bottomland forest (Fig. 2A). We attribute this to
differences in light intensity and temperature between the two
forest types. The upland pine-dominated forest was more open



Table 1
Results from an analysis of covariance on the three-way factorial design.

Source df MS F P

Forest type 1 185.83 4.62 0.04

Tree species 2 112.03 2.78 0.08

Wood posture 1 262.53 6.52 0.02

Forest type � tree species 2 68.81 1.71 0.20

Forest type �wood posture 1 30.84 0.77 0.39

Tree species �wood posture 2 15.86 0.39 0.68

Forest type � tree species � posture 2 0.10 0.00 1.00

Surface area (covariate) 1 117.67 2.92 0.10

Bark surface area (covariate) 1 0.45 0.01 0.92

Error 22 40.26

Total 35

Fig. 3. Mean (�SE) number of saproxylic beetle species collected from wood in upland

and bottomland forests for each of three tree species in South Carolina, USA.
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and sun-exposed than the bottomland hardwood forest and was
consequently warmer and less humid (Fig. 1). A number of
studies have shown that sun-exposure promotes saproxylic
beetle diversity (Bouget and Duelli, 2004, and references
therein). For example, most saproxylic beetle species in Sweden,
including 59% of those red-listed, can tolerate and often prefer
sun-exposed conditions (Jonsell et al., 1998; Lindhe et al., 2005).

The two forest types supported fairly distinct communities
even though we sampled the same tree species in both. Indicator
species analysis determined that 15 and 9 species were
significantly associated with the upland and bottomland forests,
respectively (Appendix B).

Further research is needed to better understand how and why
saproxylic beetle communities differ between forest types. Fire
frequency differs considerably between upland and bottomland
forests and may be particularly important in shaping saproxylic
beetle communities in the southeastern United States. For
example, the frequent fires characteristic of upland forests may
favor many pyrophilic species as they do in other regions (Evans,
1966; Moretti et al., 2004). Also, frequent fires may select for
enhanced dispersal abilities. Beetles in upland fire-prone forests
may need to flee fires and re-colonize burned areas regularly
compared to those in bottomland forests. This question has
important implications with respect to the dead wood connectivity
required in different forest types (Grove, 2006).
2. T
Fig
an
ree species. There were no significant differences in beetle
richness among tree species (Table 1). The observation that
considerably fewer species emerged from P. taeda than L.

styraciflua (Fig. 2B) may be attributed in part to the fact that bark
surface area, a covariate in our model, was significantly lower for
. 2. Mean (�SE) number of saproxylic beetle species from two forest types (A), three tree s

analysis of covariance for the three-way factorial design (Table 1).
P. taeda than for L. styraciflua. However, because 152 species
emerged from L. styraciflua, compared to just 122 and 125
species from Q. nigra and P. taeda, respectively, L. styraciflua may
be of particular importance to early-successional saproxylic
beetles in the southeastern United States.

The interaction between tree species and forest type was not
significant (Table 1) even though tree abundances differed
considerably between upland and bottomland forests. We expected
more species would emerge from Q. nigra and L. styraciflua in the
bottomland than in the upland forest because those species are
much more common in bottomland forests. Similarly, we expected
P. taeda to support more species rich assemblages in the upland
forest where that species is more abundant. The observed trends
were not consistent with these expectations (Fig. 3). For example, Q.

nigra yielded, on average, about 10 more beetle species in the upland
pine-dominated stand than in the bottomland hardwood forest
(Fig. 3). The expected species richness trends also did not follow the
anticipated pattern (Fig. 4).

Recent findings from Germany corroborate our results. Müller
and Goßner (2007) sampled saproxylic beetles in the crowns of
oaks in both beech-dominated and oak-dominated forests. They
found no difference in the proportion of oak specialists between
forest types. Furthermore, there was only a weak relationship
between the proportion of oak specialists captured and surround-
ing oak density.
pecies (B) and two wood postures (C) in South Carolina, USA. The P-values are based on



Fig. 4. Lower dots indicate observed total numbers of beetle species collected from

�11 month-old logs and snags of three tree species (Q. nigra, P. taeda and L.

styraciflua) in South Carolina, USA. Above these are the mean (n = 3) Chao1 species

richness estimates with 95% confidence limits. Sampling took place in both a mixed

bottomland hardwood forest (left) and an upland pine-dominated stand (right).

Fig. 5. Vertical distribution patterns of the three most common Cossoninae

(Curculionidae) genera collected from pine snags in South Carolina, USA.
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Our results show relative tree abundance is not a good predictor
of beetle species richness and the seemingly minor hardwood
components on upland sites are of considerable importance to the
saproxylic beetle community. This may be particularly true for the
hardwood-dominated drainages frequently embedded within
upland pine stands in the southeastern United States. These
may be areas of high saproxylic beetle diversity that provide refuge
for saproxylic beetles during fires. They might also greatly enhance
habitat connectivity for species associated with hardwoods.
3. W
ood posture. In total, 194 and 171 species emerged from logs
and snags, respectively. Mean species richness was significantly
higher in logs than in snags (Fig. 2C). Similarly, species richness
estimates were consistently higher for logs regardless of tree
species and forest type (Fig. 4). These differences are consistent
with previous studies (Jonsell and Weslien, 2003; Gibb et al.,
2006; McGeoch et al., 2007; Hjältén et al., 2007; Franc, 2007)
and probably widen with time, particularly as the snags become
dry following bark loss (Boulanger and Sirois, 2007).

Although snags support fewer beetle species than logs, it is clear
from our results that a number of species specifically require snags.
Using indicator species analysis, we found 12 species were
significantly associated with snags and 18 species were signifi-
cantly associated with logs (Appendix B). A number of the snag-
associated species were primarily collected from the upper-most
portions of snags. For example, Tenebroides semicylindricus

(Trogossitidae) was found to be significantly associated with the
crowns of snags (Appendix B). Similarly, almost all specimens of
Germarostes (Ceratocanthidae) were collected from mid-bole or
higher, including five specimens from crown sections. We also
found evidence of vertical stratification among cossonine weevil
genera. While the most common genus, Cossonus, was concen-
trated near the ground and was not significantly associated with
snags, two other genera, Rhyncolus and Stenoscelis, were significant
snag associates and were collected most commonly from the
upper-most bole sections (Fig. 5).

Based on our results and those of previous studies, snags appear
vital to maintaining a complete saproxylic beetle community.
Although logs support more species rich beetle assemblages and
have their own specialist species, our data and others suggest
snags are more important than logs for conservation purposes.
First, research from Scandinavia suggests that most saproxylic
beetle species can live within standing dead wood and that snags
support more threatened species than logs (Jonsell et al., 1998;
Franc, 2007, and references therein). Second, snags become logs as
soon as they fall, usually within 5 yrs for pine in the southeastern
US (Moorman et al., 1999; Conner and Saenz, 2005), thereby
providing habitats for both snag and log-associated beetles. Third,
logging slash, if left on site, should provide adequate habitat for
many species associated with logs. Finally, snags are also required
by a wide variety of cavity-nesting birds and other vertebrates of
conservation concern (Lohr et al., 2002).

4. Conclusions

In this study we examined the saproxylic beetle community at a
single point in time, approximately 11 months after tree death. Our
results may have differed considerably had we sampled earlier or
later during the decades-long processes of wood decay and insect
succession. However, we suspect that the disparity in species
richness between snags and logs, with snags supporting fewer
species than logs, widens with time following tree death. Snags
become increasingly drier than logs with time and, as a
consequence, likely become less suitable to many saproxylic
organisms. This was demonstrated by Boulanger and Sirois (2007)
in a study of post-fire succession in Canada. The researchers found
an absence of beetle succession on black spruce snags following
bark loss. Only after the snags fell to the ground did succession
proceed. The authors attribute their findings to differences in
moisture and accessibility between snags and logs. Although some
beetle species may specialize on snags at advanced stages of decay,
it seems likely that most snag associates are early-successional
given the rapid decay rates of wood and the short longevities of
snags (Moorman et al., 1999; Conner and Saenz, 2005) in the
southeastern United States.
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Based on the three tree species sampled in this study, our results
indicate that upland forests support more saproxylic beetle species
than bottomland forests. However, bottomland forests support
many tree species absent from upland forests and may have more
saproxylic beetle species overall. We plan to further address this
question in a future paper using data from flight intercept traps.

This research provides some important insights into the habitat
associations and requirements of saproxylic beetles in the south-
eastern United States. However, further study is needed to better
understand the status of saproxylic beetles throughout the region.
Comparisons between old-growth and managed forests would be
of particular value in determining whether or not species are
declining or have disappeared from managed forests.
Appendix A

Data (mean W SE, n = 3) collected from 0.5 m wood samples taken from

L. and L. styraciflua L.) in South Carolina, USA. The samples were taken at

bole and crown. Data from the three crown sections were summed. Surface

equals the product of surface area and %bark coverage (a visual estimat

Distance from tree base (m) Diameter (m)

Logs Snags Logs Snags

Bottomland

Q. n. lower 0.85 W 0.23 0.68 W 0.04 0.36 W 0.01 0.35 W
Q. n. middle 7.83 W 0.14 8.42 W 0.16 0.26 W 0.01 0.27 W
Q. n. upper 14.78 W 0.34 15.33 W 0.50 0.20 W 0.00 0.20 W
Q. n. crown – – 0.25 W 0.02 0.24 W
P.t. lower 0.52 W 0.08 0.75 W 0.14 0.36 W 0.01 0.37 W
P.t. middle 9.97 W 0.80 9.69 W 0.84 0.28 W 0.01 0.31 W
P.t. upper 19.40 W 0.95 18.11 W 1.24 0.19 W 0.01 0.22 W
P.t. crown – – 0.23 W 0.01 0.21 W
L.s. lower 0.99 W 0.24 0.97 W 0.04 0.32 W 0.04 0.40 W
L.s. middle 7.32 W 0.12 9.11 W 0.86 0.24 W 0.02 0.29 W
L.s. upper 14.17 W 1.35 17.60 W 1.83 0.19 W 0.04 0.19 W
L.s. crown – – 0.25 W 0.03 0.23 W

Upland

Q. n. lower 0.66 W 0.09 0.81 W 0.14 0.33 W 0.02 0.39 W
Q. n. middle 4.84 W 0.72 5.01 W 0.15 0.26 W 0.03 0.27 W
Q. n. upper 8.78 W 0.42 8.45 W 0.38 0.19 W 0.03 0.21 W
Q. n. crown – – 0.24 W 0.03 0.23 W
P.t. lower 0.97 W 0.38 0.73 W 0.08 0.36 W 0.01 0.35 W
P.t. middle 8.27 W 1.05 7.90 W 0.32 0.31 W 0.02 0.28 W
P.t. upper 16.05 W 1.78 16.00 W 0.67 0.26 W 0.02 0.23 W
P.t. crown – – 0.20 W 0.02 0.23 W
L.s. lower 0.55 W 0.03 0.83 W 0.11 0.35 W 0.01 0.31 W
L.s. middle 5.24 W 0.74 5.00 W 0.28 0.26 W 0.02 0.23 W
L.s. upper 10.13 W 1.43 8.88 W 0.54 0.20 W 0.02 0.18 W
L.s. crown – – 0.22 W 0.01 0.24 W

Appendix B

List of beetles collected from logs and snags of three tree species in

Abundances are presented in terms of logs/snags. Associations are base

bottomland; (3) oak, pine, or sweetgum; and (4) bole position (lower, mi
**P < 0.01, ***P < 0.001.

Family/species Association(s)

(indicator value)

Botto

Oak

Aderidae

Cnopus impressus (LeConte) Middle bole (17.8***);

pine (13.4**)

0/0

Ganascus ptinoides (Schwarz) 0/0

Ganascus ventricosus (LeConte) 0/0

Anobiidae

Lasioderma sp. 1/0
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11 month-old logs and snags of three tree species (Q. nigra L., P. taeda

four positions from each log and snag: lower bole, middle bole, upper

area calculations do not include the ends of the logs. Bark surface area

e).

Surface area (m2) Bark surface area (m2)

Logs Snags Logs Snags

0.02 0.56 W 0.02 0.55 W 0.03 0.56 W 0.02 0.55 W 0.03

0.01 0.42 W 0.02 0.42 W 0.02 0.42 W 0.02 0.42 W 0.02

0.01 0.31 W 0.01 0.31 W 0.01 0.31 W 0.01 0.29 W 0.03

0.02 0.39 W 0.03 0.38 W 0.03 0.39 W 0.03 0.38 W 0.03

0.04 0.57 W 0.01 0.58 W 0.06 0.54 W 0.04 0

0.04 0.43 W 0.02 0.49 W 0.06 0.42 W 0.02 0.28 W 0.17

0.03 0.29 W 0.01 0.35 W 0.04 0.19 W 0.09 0

0.01 0.36 W 0.01 0.33 W 0.01 0.21 W 0.04 0.10 W 0.02

0.02 0.50 W 0.07 0.64 W 0.03 0.50 W 0.07 0.64 W 0.03

0.03 0.38 W 0.04 0.46 W 0.04 0.37 W 0.04 0.40 W 0.03

0.01 0.30 W 0.06 0.30 W 0.01 0.29 W 0.08 0.30 W 0.01

0.02 0.40 W 0.04 0.36 W 0.03 0.40 W 0.04 0.32 W 0.05

0.04 0.51 W 0.03 0.62 W 0.07 0.38 W 0.09 0.62 W 0.07

0.02 0.41 W 0.05 0.42 W 0.03 0.37 W 0.05 0.42 W 0.03

0.02 0.30 W 0.04 0.33 W 0.04 0.24 W 0.07 0.33 W 0.04

0.02 0.38 W 0.04 0.37 W 0.04 0.36 W 0.05 0.37 W 0.04

0.02 0.57 W 0.02 0.55 W 0.03 0.23 W 0.12 0.38 W 0.19

0.01 0.49 W 0.03 0.44 W 0.02 0.25 W 0.14 0.05 W 0.05

0.00 0.40 W 0.03 0.35 W 0.00 0.34 W 0.04 0.14 W 0.09

0.01 0.31 W 0.03 0.35 W 0.02 0.28 W 0.04 0.15 W 0.05

0.02 0.54 W 0.02 0.48 W 0.02 0.54 W 0.02 0.48 W 0.02

0.01 0.40 W 0.03 0.36 W 0.02 0.40 W 0.03 0.36 W 0.02

0.01 0.32 W 0.03 0.28 W 0.02 0.32 W 0.03 0.28 W 0.02

0.01 0.35 W 0.02 0.37 W 0.02 0.35 W 0.02 0.37 W 0.02

two forest types at the Savannah River Site, South Carolina, USA.

d on significant indicator values for (1) snags or logs; (2) upland or

ddle, upper or crown) with asterisks denoting significance: *P < 0.05,

mland Upland Total

Pine Sweetgum Oak Pine Sweetgum

5/3 0/0 0/0 3/0 1/0 12

4/0 1/0 0/0 0/0 0/0 5

1/0 2/0 0/1 5/0 0/0 9

0/0 0/0 1/3 0/0 0/0 5



Appendix B (Continued )
Family/species Association(s)

(indicator value)

Bottomland Upland Total

Oak Pine Sweetgum Oak Pine Sweetgum

Petalium sp. Bottomland (19.3**);

sweetgum (34.8***)

0/0 0/1 30/20 0/0 0/0 1/3 55

Protheca sp. Bottomland (9.4*);

lower bole (19.1***);

sweetgum (16.7**)

0/0 0/0 15/45 0/0 0/0 2/0 62

Tricorynus sp. Middle bole (11*);

sweetgum (12.5**)

0/0 0/0 15/3 0/0 0/0 1/0 19

Anthribidae

Piesocorynus sp. Oak (14.3**);

log (9.5*)

7/0 0/0 0/1 38/0 0/0 0/0 46

Biphyllidae

Diplocoelus rudis (LeConte) 0/0 0/0 0/0 1/0 2/0 3/0 6

Bostrichidae

Lichenophanes sp. 0/0 0/0 0/0 2/0 0/0 0/0 2

Bothrideridae

Bothrideres geminatus (Say) Snag (28.1**) 0/3 0/9 0/5 5/7 1/12 0/8 50

Prolyctus exaratus (Melsheimer) 0/2 0/0 0/0 0/0 0/0 0/0 2

Sosylus extensus Casey Lower bole (18*);

oak (51.4***)

73/84 0/0 0/11 60/91 0/0 7/11 337

Brentidae

Arrenodes minutus (Drury) 8/2 0/0 7/0 0/12 0/0 0/0 29

Buprestidae

Agrilus sp. Oak (8.3*) 1/0 0/0 0/0 0/5 0/0 0/0 6

Buprestis lineata Fabricius 0/0 0/2 0/0 0/0 0/0 0/0 2

Chrysobothris femorata Olivier 2/0 0/0 0/0 1/0 0/0 0/1 4

Chrysobothris sexsignata (Say) 0/1 0/0 0/0 0/0 0/0 0/0 1

Carabidae

Anillinus sp. 0/0 1/0 0/0 0/0 0/0 0/0 1

Coptodera aerata Dejean 0/1 0/0 0/0 0/0 0/0 0/0 1

Mioptachys flavicauda (Say) Lower bole (45.3***);

log (29.4*)

8/0 39/23 36/94 10/0 70/5 49/6 340

Perigona pallipennis (LeConte) 0/0 0/0 2/0 0/0 0/0 0/0 2

Phloeoxena signata (Dejean) 0/0 1/0 0/0 0/0 0/0 1/0 2

Polyderis laevis (Say) 0/0 0/0 0/0 0/0 1/0 0/0 1

Tachyta nana inornata (Say) Upland (9.7*);

log (7.9*)

0/0 0/0 0/0 3/0 12/1 2/0 18

Cerambycidae

Acanthocinus nodosus (Fabricius) Lower bole (11.1*);

pine (8.3*)

0/0 3/0 0/0 0/0 3/0 0/0 6

Acanthocinus obsoletus (Olivier) Pine (16.7**) 0/0 7/0 0/0 0/0 9/2 0/0 18

Aegomorphus modestus (Gyllenhal) Sweetgum (8.3*) 0/0 0/0 0/0 0/0 0/0 10/0 10

Aegomorphus quadrigibbus (Say) 0/0 0/0 0/0 0/0 0/0 4/0 4

Astylopsis sexguttata (Say) 0/0 1/0 0/0 0/0 0/0 0/0 1

Curius dentatus Newman 0/0 0/0 0/0 0/0 0/0 0/3 3

Elaphidion mucronatum (Say) 0/0 0/0 0/0 0/0 0/0 2/0 2

Leptostylus asperatus (Haldeman) Sweetgum (18.7***) 0/0 0/0 4/0 0/0 0/0 1/14 19

Leptostylus planidorsus (LeConte) 0/0 0/0 0/0 0/0 0/0 1/0 1

Lepturges confluens (Haldeman) Sweetgum (8.3*) 0/0 0/0 0/2 0/0 0/0 0/2 4

Liopinus alpha (Say) Sweetgum (10.4*) 0/0 0/0 0/0 0/0 0/0 0/13 13

Monochamus carolinensis (Olivier) 0/0 2/0 0/0 0/0 0/1 0/0 3

Monochamus titillator (Fabricius) Middle bole (17.5*);

pine (45***)

0/0 19/17 1/0 0/0 8/9 0/0 54

Neoclytus scutellaris (Olivier) Oak (18.7***) 2/2 0/0 0/0 2/9 0/0 0/0 15

Urographis fasciatus (DeGeer) Lower bole (26.6**);

oak (43.7***)

74/113 0/0 36/31 20/61 0/0 42/45 422

Xylotrechus colonus (Fabricius) Lower bole (30.1***);

oak (23**)

7/12 1/0 4/7 3/78 0/0 13/11 136

Xylotrechus sagittatus (Germar) Pine (61.9***) 0/0 20/41 1/0 0/0 14/32 0/0 108

Ceratocanthidae

Germarostes aphodioides (Illiger) Oak (14.9**);

snag (11.8*)

1/7 0/0 0/2 0/9 0/0 0/0 19

Germarostes globosus (Say) 0/4 0/0 0/0 0/0 0/0 0/0 4

Cerylonidae

Cerylon unicolor (Ziegler) Lower bole (23.7**);

sweetgum (18.3*)

1/6 1/5 19/37 0/0 5/8 12/34 128

Hypodacne punctata LeConte 0/0 0/0 1/0 0/0 0/0 0/0 1

Murmidius ovalis (Beck) Upland (10.8*);

oak (16.2**)

0/1 0/0 0/0 3/28 0/1 0/0 33

Mychocerinus depressus (LeConte) Snag (8*) 0/22 0/0 0/0 0/0 0/2 1/1 26

Philothermus glabriculus LeConte Log (12.5**) 0/0 0/0 4/0 1/0 11/0 6/0 22

M.D. Ulyshen, J.L. Hanula / Forest Ecology and Management 257 (2009) 653–664 659



Appendix B (Continued )
Family/species Association(s)

(indicator value)

Bottomland Upland Total

Oak Pine Sweetgum Oak Pine Sweetgum

Chelonariidae

Chelonarium lecontei Thomson 0/0 0/0 0/4 0/0 0/0 0/0 4

Ciidae

Ciidae spp. Lower bole (46.5**) 2393/419 7/0 342/98 53/293 46/4 591/447 4693

Cleridae

Ababa tantilla (LeConte) 1/0 0/0 0/0 0/0 0/0 0/0 1

Chariessa pilosa (Forster) 1/0 0/0 0/0 1/1 0/0 0/0 3

Cymatodera undulata (Say) 0/0 0/1 0/0 0/0 0/0 0/0 1

Neorthopleura thoracica (Say) Oak (10.4*); crown (10*) 2/0 0/0 0/0 7/1 0/0 0/0 10

Priocera castanea (Newman) 0/0 0/5 0/0 0/0 0/2 1/0 8

Colydiidae

Aulonium parallelopipedum (Say) 0/0 0/0 0/1 0/5 0/0 0/1 7

Bitoma carinata (LeConte) Bottomland (32.1**); lower

bole (45***); oak (27.2**)

124/74 11/4 25/100 15/28 8/0 3/32 424

Bitoma quadricollis (Horn) Oak (18.7***); log (12.5**) 9/0 3/0 0/0 14/3 0/0 0/0 29

Bitoma quadriguttata (Say) Upland (38.1***); oak (32.4**) 8/27 0/1 6/6 50/36 2/0 20/46 202

Colydium lineola Say Lower bole (27.2*);

oak (48.3***); snag (50.2**)

35/205 0/0 32/304 57/471 0/0 30/157 1291

Colydium nigripenne LeConte Lower bole (19.3**);

pine (35.1***)

0/0 5/47 0/0 0/0 55/22 1/0 130

Endeitoma dentata (Horn) 0/0 0/0 0/0 0/0 1/0 0/0 1

Endeitoma granulata (Say) 0/0 0/1 0/0 0/0 13/0 0/0 14

Microsicus parvulus (Guérin-Méneville) Upland (9.7*); oak (14.6**) 0/0 0/0 0/0 2/9 0/0 0/0 11

Namunaria guttulata (LeConte) 0/0 1/1 0/0 2/0 2/0 1/0 7

Nematidium filiforme Leconte Oak (43.7***); snag (17.4*) 79/302 0/0 0/0 23/209 0/0 0/0 613

Synchita fuliginosa Melsheimer Lower bole (40***);

sweetgum (32.9**)

26/56 1/0 12/68 59/37 0/1 183/15 458

Corylophidae

Corylophidae spp. Oak (57.7***); log (48.8***) 460/2 3/2 72/4 980/69 6/3 36/1 1638

Cryptophagidae

Atomaria sp. 0/0 1/0 0/1 0/0 0/0 0/0 2

Curculionidae

Acalles minimus Blatchley 1/0 0/0 0/1 0/0 0/0 0/0 2

Caulophilus rufotestaceus (Champion) 0/0 0/0 1/0 0/0 0/0 0/0 1

Cossonus spp. Pine (68.7***) 0/0 225/1255 0/0 0/1 630/1672 0/0 3783

Dryocoetes autographus (Ratzeburg) 0/0 0/0 11/0 0/0 0/0 0/0 11

Dryophthorus americanus Germar 0/0 8/0 4/3 0/0 4/0 0/0 19

Dryoxylon onoharaensum (Murayama) Sweetgum (8.3*) 0/0 0/0 0/0 0/0 0/0 22/34 56

Euplatypus compositus (Say) Upland (22.8*);

middle bole (23**);

sweetgum (22.3*)

9/0 0/0 564/457 1588/169 0/0 381/437 3605

Gnathotrichus materiarius (Fitch) 0/0 6/0 0/0 0/0 0/0 0/0 6

Himatium errans LeConte 0/0 0/1 0/0 0/0 1/2 0/0 4

Hypothenemus spp. Upland (29.9**);

lower bole (37.5***);

sweetgum (38.8***)

4/4 0/0 13/12 2/94 0/0 622/753 1504

Monarthrum mali (Fitch) 0/0 0/0 0/14 0/18 0/0 1/0 33

Myoplatypus flavicornis (Fabricius) Lower bole (13.9**);

pine (10.4*)

0/0 167/1 0/0 0/0 65/0 0/0 233

Oxoplatypus quadridentatus Olivier Oak (53.6***) 761/966 0/0 38/1 171/1896 0/0 0/0 3833

Pityophthorus sp. 1 Sweetgum (10.4*);

crown (10.9*)

0/0 0/0 36/0 0/0 0/0 3/24 63

Pityophthorus sp. 2 0/0 0/4 0/0 0/0 0/1 0/0 5

Pityophthorus sp. 3 0/0 0/0 0/0 0/0 0/0 11/0 11

Pseudopentarthrum sp. 0/0 0/0 0/1 0/0 0/0 0/0 1

Pseudopityophthorus pruinosus (Eichhoff) 0/0 0/0 0/0 1/5 0/0 0/0 6

Rhyncolus sp. Pine (29.2***); snag (15**) 0/0 7/55 0/0 0/0 1/355 0/0 418

Scolytus multistriatus (Marsham) 0/0 0/0 0/0 0/1 0/0 0/0 1

Stenoscelis andersoni Buchanan Bottomland (13.9**);

snag (13.9**)

0/1 0/24 0/11 0/0 0/0 0/0 36

Tomolips quercicola (Boheman) 0/2 0/2 0/3 0/3 0/0 0/0 10

Xyleborinus gracilis (Eichhoff) 0/0 0/0 0/0 0/25 0/0 0/0 25

Xyleborinus saxeseni (Ratzeburg) Sweetgum (22.8***) 0/0 0/0 441/36 48/1 0/0 25/15 566

Xyleborus affinis Eichhoff Lower bole (18.4*);

sweetgum (36.1***)

1/4 0/0 473/998 8/71 1/0 42/612 2210

Xyleborus californicus Wood 0/1 0/0 0/0 0/0 0/0 0/0 1

Xyleborus ferrugineus (Fabricius) Lower bole (24.7**);

pine (28.2***); log (26.3***)

20/0 565/37 154/14 0/0 182/0 11/0 983

Xyleborus pubescens Zimmermann Pine (18.7***);

log (12.5**)

0/0 13/0 0/0 0/0 30/0 0/0 43

sp. 29 0/0 0/0 0/0 0/0 0/0 1/0 1
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Appendix B (Continued )
Family/species Association(s)

(indicator value)

Bottomland Upland Total

Oak Pine Sweetgum Oak Pine Sweetgum

Dermestidae

Trogoderma ornatum (Say) 0/0 0/1 0/0 0/0 0/0 0/0 1

Elateridae

Ampedus luteolus (Say) 0/0 0/0 0/0 0/0 2/0 0/0 2

Dicrepidius ramicornis (Palisot de Beauvois) 0/0 1/0 0/0 0/0 1/0 0/2 4

Drapetes geminatus Say 0/0 0/0 0/0 0/0 0/0 1/0 1

Glyphonyx sp. 0/0 0/0 0/0 0/0 0/1 0/0 1

Endomychidae

Clemmus minor (Crotch) 0/0 0/0 0/0 0/2 0/0 0/0 2

Micropsephodes lundgreni Leschen and Carlton Sweetgum (10.4*) 0/0 0/0 1/19 0/0 0/0 0/0 20

Eucnemidae

Dromaeolus sp. 0/0 1/0 0/0 0/0 0/0 0/0 1

Nematodes atropos Say 4/0 0/0 0/0 2/0 0/0 0/0 6

Histeridae

Acritus exiguus (Erichson) Sweetgum (21*) 3/7 0/0 1/100 26/2 0/0 16/15 170

Aeletes floridae (Marseul) 0/0 0/0 1/0 0/0 0/0 0/0 1

Aeletes politus (LeConte) 0/0 0/0 1/0 0/0 0/0 0/0 1

Aeletes simplex (LeConte) Lower bole (15**);

log (13.2*)

1/0 0/0 1/2 3/0 6/0 2/0 15

Bacanius punctiformis (LeConte) Upland (22.4**);

lower bole (23.1**)

2/0 1/2 20/7 15/0 32/21 17/47 164

Bacanius sp. 3 (undescribed) 0/0 0/0 0/3 0/0 0/0 0/0 3

Bacanius tantillus LeConte 0/0 0/0 0/0 0/0 12/0 0/0 12

Baconia aeneomicans (Horn) 0/0 0/0 0/0 0/0 1/0 1/0 2

Eblisia carolina (Paykull) 0/0 0/0 1/0 0/0 1/0 0/0 2

Epierus regularis (Palisot de Beauvois) 0/0 0/0 0/4 0/1 0/0 0/1 6

Paromalus seminulum Erichson Sweetgum (9.4*) 1/0 0/0 4/0 0/0 0/0 4/1 10

Platylomalus aequalis (Say) Bottomland (8.3*);

sweetgum (9.1*)

1/0 0/0 4/3 0/0 0/0 0/0 8

Platysoma leconti Marseul Sweetgum (18.3**) 2/0 0/1 4/9 4/0 0/0 1/5 26

Plegaderus transversus (Say) Upland (11.9*);

pine (22.3***)

0/0 0/5 0/0 1/0 7/22 0/0 35

Laemophloeidae

Cryptolestes dybasi Thomas 0/0 0/0 0/0 5/1 0/0 0/0 6

Cryptolestes punctatus (LeConte) 0/0 0/0 0/0 3/0 0/1 5/0 9

Cryptolestes uncicornis (Reitter) Oak (17.7**) 0/7 0/0 0/2 130/0 0/0 6/0 145

Laemophloeus biguttatus (Say) 0/0 0/0 0/0 4/1 0/0 1/0 6

Laemophloeus megacephalus Grouvelle Lower bole (13.1*) 2/6 0/0 34/0 1/0 0/0 65/0 108

Lathropus vernalis LeConte Upland (27.9**); oak (42.6***);

snag (32.3***)

4/75 0/0 1/2 6/538 1/2 7/4 640

Leptophloeus angustulus (LeConte) 1/0 0/0 0/0 1/1 0/0 0/0 3

Narthecius grandiceps LeConte 0/0 0/0 0/0 0/1 0/0 0/0 1

Phloeolaemus chamaeropis (Schwarz) 0/0 0/0 5/0 1/0 0/0 0/0 6

Placonotus modestus (Say) 0/0 0/0 0/0 2/0 0/0 0/1 3

Placonotus zimmermanni (LeConte) Oak (30.7***); log (20.4***) 13/0 0/0 0/0 39/1 0/0 1/0 54

Latridiidae

Cartodere constricta (Gyllenhal) 0/0 0/0 0/0 0/1 0/1 0/0 2

Corticarina sp. 0/0 0/0 0/0 0/0 1/0 6/0 7

Enicmus sp. 0/0 0/0 0/0 0/3 0/0 0/0 3

Leiodidae

Agathidium sp. 0/0 0/0 0/0 0/0 0/0 1/0 1

Lycidae

Plateros sp. 0/0 0/0 0/0 0/0 0/0 1/0 1

Melandryidae

Phloeotrya sp. 1/0 0/0 0/0 0/1 0/0 1/0 3

Melyridae

Attalus sp. 0/0 0/0 0/0 0/4 0/0 1/0 5

Micromalthidae

Micromalthus debilis LeConte Bottomland (8.3*) 1/1 0/0 2/2 0/0 0/0 0/0 6

Monotomidae

Bactridium sp. Upland (12.5**);

oak (16***)

0/0 0/0 0/0 23/2 0/0 1/0 26

Monotoma sp. 0/0 0/0 0/0 0/1 0/0 0/0 1

Rhizophagus sp. 0/0 0/0 0/0 0/0 1/0 0/0 1

Mordellidae

sp. 1 0/0 0/0 2/0 0/0 0/0 0/0 2

sp. 2 0/0 0/0 2/0 0/0 0/0 0/0 2
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(indicator value)

Bottomland Upland Total

Oak Pine Sweetgum Oak Pine Sweetgum

Mycetophagidae

Litargus sexpunctatus (Say) Upland (9.7*); oak (14.6**) 0/0 0/0 0/0 5/10 0/0 0/0 15

Litargus sp. 2 0/0 0/0 0/0 1/0 0/0 0/0 1

Mycetophagus pini Ziegler 0/0 2/0 0/0 0/0 1/0 0/0 3

Thrimolus minutus Casey 0/0 0/0 0/1 0/0 1/0 0/0 2

Nitidulidae

Carpophilus sp. 1 0/0 0/0 0/0 0/0 1/0 0/0 1

Carpophilus sp. 2 1/1 0/0 0/0 0/2 0/0 0/0 4

Epuraea luteolus (Erichson) 0/0 0/0 0/0 1/1 0/0 1/0 3

Prometopia sexmaculata (Say) Upland (21.2***); oak

(21.4***); log (17*)

4/0 0/0 2/0 32/8 4/1 7/2 60

Passandridae

Catogenus rufus (Fabricius) 0/0 0/0 0/0 0/0 0/1 0/0 1

Phalacridae

sp. 1 0/43 0/0 0/0 0/0 0/0 0/0 43

sp. 2 0/0 0/0 0/0 0/0 0/0 1/0 1

Ptiliidae

spp. Pine (28.1***) 1/0 32/222 3/0 0/0 14/4 1/5 282

Pyrochroidae

Dendroides canadensis LeConte 0/0 0/0 0/0 0/0 0/0 3/0 3

Rhysodidae

Omoglymmius americanus (Laporte) 0/0 0/0 1/0 0/0 0/0 0/0 1

Scirtidae

Cyphon sp. 0/0 0/0 1/1 0/0 0/0 0/0 2

Scraptiidae

Canifa sp. 0/0 0/0 0/0 0/0 0/5 0/0 5

Scydmaenidae

sp. 1 0/0 0/0 0/0 0/0 1/0 0/0 1

sp. 2 0/0 0/0 0/0 0/0 0/1 0/0 1

Silvanidae

Ahasversus advena (Waltl) 3/1 2/0 0/2 1/15 0/1 0/1 26

Cathartosilvanus imbellis (LeConte) 0/0 1/0 0/5 14/3 0/0 5/0 28

Silvanus muticus Sharp Upland (9.9*) 0/0 0/0 1/0 2/0 2/0 1/3 9

Silvanus planatus Germar 0/0 0/0 0/0 6/0 0/0 2/0 8

Sphindidae

Sphindus sp. 0/0 1/0 0/0 0/0 1/0 4/0 6

Staphylinidae

Anacyptus testaceus (LeConte) Lower bole (9.4*);

pine (10.4**)

0/0 1/1 0/0 0/0 36/0 0/0 38

Clavilispinus sp. Lower bole (41.3***) 38/99 124/10 28/153 14/40 90/0 27/79 702

Hesperus sp. 0/0 0/0 0/2 0/0 0/0 0/0 2

Homaeotarsus sp. 0/0 0/0 1/0 0/0 0/0 0/0 1

Myrmecocephalus sp. Lower bole (11.1*) 0/0 3/1 0/0 0/6 0/0 0/1 11

Myrmecosaurus ferrugineus Bruch 0/0 0/0 0/0 0/0 1/0 0/0 1

Scaphisoma sp. 0/0 0/0 0/0 0/0 0/0 2/0 2

Sunius sp. 0/0 0/0 0/0 0/0 0/0 1/0 1

Thoracophorus costalis (Erichson) Log (35.8***) 5/0 4/0 72/0 28/0 34/1 83/10 237

Toxidium sp. 0/0 0/0 0/1 0/0 0/0 0/0 1

sp11 0/0 1/0 0/0 1/0 0/0 0/0 2

sp12 0/0 0/0 0/3 3/0 0/0 0/0 6

sp13 0/0 0/0 0/0 1/0 0/0 1/0 2

sp14 0/0 0/0 0/0 0/0 0/0 0/1 1

sp15 5/0 0/0 0/0 0/0 0/0 0/0 5

sp16 Bottomland (8.3*) 0/1 0/3 7/3 0/0 0/0 0/0 14

sp17 0/0 0/2 0/0 0/0 0/0 0/0 2

sp18 0/0 0/1 0/0 0/0 0/0 0/0 1

sp19 0/0 0/2 0/0 0/0 0/0 0/0 2

sp20 0/0 1/6 0/0 0/0 0/0 0/0 7

sp21 0/0 0/1 0/0 0/0 0/0 0/0 1

sp22 0/0 0/1 0/0 0/0 0/0 0/0 1

sp23 0/0 1/0 0/0 0/0 0/0 0/0 1

sp24 Pine (18.7***); log (9.1*) 0/0 3/2 0/0 0/0 25/0 0/0 30

sp25 0/0 0/1 0/0 0/0 0/0 0/0 1

sp26 0/0 0/1 0/0 0/0 0/0 0/0 1

sp27 Pine (8.3*) 0/0 1/0 0/0 0/0 3/0 0/0 4

sp28 Sweetgum (15.5*) 0/0 0/0 83/36 0/0 4/6 9/0 138

sp29 0/0 0/0 1/0 0/0 0/0 0/0 1

sp30 0/0 0/0 1/0 1/0 0/0 0/0 2
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Appendix B (Continued )
Family/species Association(s)

(indicator value)

Bottomland Upland Total

Oak Pine Sweetgum Oak Pine Sweetgum

sp31 0/0 0/0 14/0 0/0 0/0 0/0 14

sp32 0/0 0/0 0/1 0/0 0/0 1/0 2

sp33 0/0 0/0 0/0 0/0 2/0 0/0 2

sp34 0/0 0/0 0/0 0/0 0/0 0/4 4

sp35 0/0 0/0 0/0 0/0 0/0 1/0 1

sp36 0/0 0/0 0/0 0/0 1/0 0/0 1

sp37 0/0 0/0 0/0 0/0 0/1 0/0 1

sp38 0/0 0/0 0/0 0/0 2/0 0/0 2

sp39 0/0 0/0 0/0 0/0 1/0 0/0 1

sp40 0/0 0/0 0/0 0/0 2/0 0/0 2

sp41 0/0 2/1 1/0 0/0 0/1 0/0 5

sp42 0/0 0/0 0/0 1/0 0/0 0/0 1

sp43 0/0 0/0 0/0 0/0 0/2 0/0 2

sp44 0/0 0/0 1/1 0/0 0/0 0/0 2

sp45 0/0 0/0 0/0 0/0 0/0 1/0 1

sp46 0/0 0/0 0/1 0/0 0/0 0/0 1

sp47 0/0 0/0 0/0 0/0 1/0 0/0 1

sp48 0/0 0/1 0/0 0/0 0/0 0/0 1

sp49 0/0 0/0 0/1 0/0 0/0 0/0 1

Synchroidae

Synchroa punctata Newman 1/0 0/0 0/0 0/0 0/0 0/0 1

Tenebrionidae

Adelina pallida (Say) 0/0 0/0 0/0 0/0 0/0 0/3 3

Alobates pennsylvanica (DeGeer) Lower bole (9.9*) 0/0 0/0 3/1 0/1 0/1 0/1 7

Corticeus thoracicus (Melsheimer) Lower bole (24.2**) 3/0 55/6 27/113 0/4 76/0 0/2 286

Gnathocerus maxillosus (Fabricius) 0/0 0/0 0/0 0/1 0/0 0/0 1

Hymenorus sp. 0/0 0/0 15/0 0/0 0/0 0/0 15

Liodema laeve (Haldeman) Lower bole (16.7***);

snag (8.3*)

0/1 0/0 0/16 0/1 0/0 0/1 19

Lobopoda erythrocnemis Germar 0/0 0/0 0/0 0/0 1/0 0/0 1

Platydema excavatum (Say) 0/0 0/0 0/0 1/0 0/0 0/0 1

Platydema flavipes (Fabricius) Pine (13.6*); log (14.4**) 0/0 13/0 2/0 0/0 14/0 2/2 33

Platydema picilabrum Melsheimer 0/1 0/0 0/0 0/0 0/0 0/0 1

Platydema ruficorne (Stürm) Lower bole (13.6*);

pine (11.7*); log (11*)

4/0 142/0 0/0 0/0 59/2 10/0 217

Platydema subcostatum Laporte and Brulle 1/0 0/0 0/0 0/0 0/0 1/0 2

Poecilocrypticus formicophilus Gebien 0/0 0/0 0/0 0/0 0/1 0/0 1

Tetratomidae

Eustrophus tomentosus Say 0/0 0/0 1/0 0/0 0/0 0/0 1

Throscidae

sp. 0/0 1/0 0/0 0/0 0/0 0/0 1

Trogossitidae

Airora cylindrica (Serville) Pine (19.9***); snag (16.9**) 0/0 1/13 0/1 0/2 1/11 0/1 30

Corticotomus cylindricus (LeConte) 0/0 0/0 0/0 0/0 0/1 0/0 1

Lycoptis americana (Motschulsky) 0/0 0/0 0/0 0/0 0/1 0/0 1

Temnoscheila virescens (Fabricius) Sweetgum (41.2***) 5/3 0/1 16/19 2/8 1/2 8/10 75

Tenebroides bimaculatus (Melsheimer) 0/4 0/0 0/0 0/0 0/0 0/0 4

Tenebroides collaris (Sturm) 0/0 1/1 0/0 0/0 0/2 0/0 4

Tenebroides corticalis (Melsheimer) Lower bole (18.6*);

log (25.8**)

5/2 18/0 7/3 10/0 2/0 9/10 66

Tenebroides laticollis (Horn) Oak (16.3**) 1/1 0/0 0/0 1/38 0/0 1/0 42

Tenebroides marginatus (Palisot de Beauvois) Upland (9*); lower bole

(10.9*); pine (8.3*)

0/0 0/1 0/0 6/0 2/5 0/0 14

Tenebroides nanus (Melsheimer) bottomland (12.4*) oak

(11.8*) snag (16.7**)

0/30 0/0 0/3 0/0 0/0 0/4 37

Tenebroides semicylindricus (Horn) Snag (14.1**); crown (12*) 0/2 0/4 0/0 1/2 0/0 0/4 13

Thymalus marginicollis Chevrolat 0/0 0/0 0/0 0/0 0/0 1/0 1

Zopheridae

Hyporhagus punctulatus Thomson 0/0 0/0 0/0 1/0 0/0 3/0 4

Pycnomerus haematodes (Fabricius) Upland (13.2**);

pine (20.6***)

0/0 0/4 0/0 0/0 11/64 1/0 80

Pycnomerus reflexus (Say) Bottomland (19.4***);

lower bole (12.3*);

log (14.5**)

28/0 5/0 22/3 0/0 0/0 0/0 58

Pycnomerus sulcicollis LeConte Lower bole (20.3**);

pine (15.2*); log (22.2***)

2/0 6/0 3/0 3/0 33/0 1/0 48

Total number of individuals 4262/2608 1552/1837 2799/2918 3633/4452 1683/2297 2470/2946 33457

Number of species, total 58/45, 76 56/51, 83 72/66, 100 72/65, 97 71/46, 92 85/53, 105 250
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Dufrêne, M., Legendre, P., 1997. Species assemblages and indicator species: the need
for a flexible asymmetrical approach. Ecol. Monograph 67, 345–366.

Evans, W.G., 1966. Perception of infrared radiation from forest fires by Melanophila
acuminate De Geer (Buprestidae: Coleoptera). Ecology 47, 1061–1065.

Fonte, S.J., Schowalter, T.D., 2004. Decomposition in forest canopies. In: Lowman,
M.D., Rinker, H.B. (Eds.), Forest Canopies. Elsevier Academic Press, Burlington,
Massachusetts, pp. 413–422.

Franc, N., 2007. Standing or downed dead trees—does it matter for saproxylic
beetles in temperate oak-rich forest? Can. J. For. Res. 37, 2494–2507.

Gibb, H., Pettersson, R.B., Hjältén, J., Hilszczański, J., Ball, J.P., Johansson, T., Atlegrim,
O., Danell, K., 2006. Conservation-oriented forestry and early successional
saproxylic beetles: responses of functional groups to manipulated dead wood
substrates. Biol. Conserv. 129, 437–450.

Grove, S.J., 2006. A research agenda for insects and dead wood. In: Grove, S.J.,
Hanula, J.L. (Eds.), Insect Biodiversity and Dead Wood: Proceedings of a Sym-
posium for the 22nd International Congress of Entomology. USDA For. Serv.,
Gen. Tech. Rep. SRS-93, pp. 98–108.

Harding, R., 2007. Georgia forests: epicenter of the bioenergy corridor. Georgia
Forestry Today (November/December), 12–15.

Hedgren, P.O., Schroeder, L.M., 2004. Reproductive success of the spruce bark beetle
Ips typographus (L.) and occurrence of associated species: a comparison
between standing beetle-killed trees and cut trees. For. Ecol. Manage. 203,
241–250.
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